

Implementation of INSPIRE in Lithuania: experience with the transition to FOSS4G

Andrius Balčiūnas, Rita Viliuvienė Vilnius University

The Baltic Geospatial Information Technology Conference | Rīga | 2023

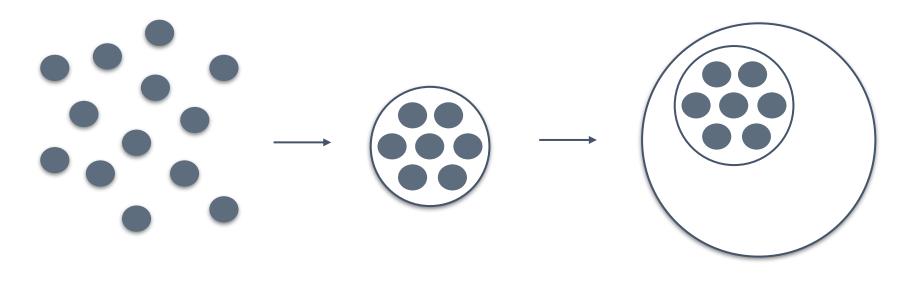
Presentation outlines

- → Roadmap of INSPIRE implementation in Lithuania
- → Implementation using commercial software
- → Transition to open source
- → Takeaways from this experience

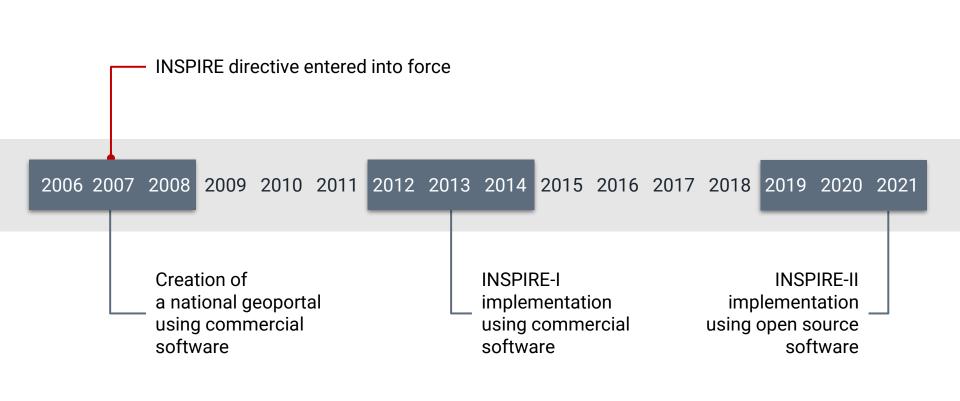
roadmap of

INSPIRE implementation in Lithuania

Mandatory and must be transposed into national laws


DATA

Implementation rules for the interoperability of spatial data sets and services


TECHNOLOGIES

Guidelines, good practices, webinars, pilots

24 data providers, > 100 data sets, different formats of data sets and services, local portals Central national portal geoportal.lt

INSPIRE geoportal

Implementation using commercial software

INSPIRE-I

SCOPE

Prepare and publish data sets from Annex I and Annex II (only orthophoto imagery). 10 themes total.

IMPLEMENTATION

Implemented by the company that won the tender

TECHNOLOGIES

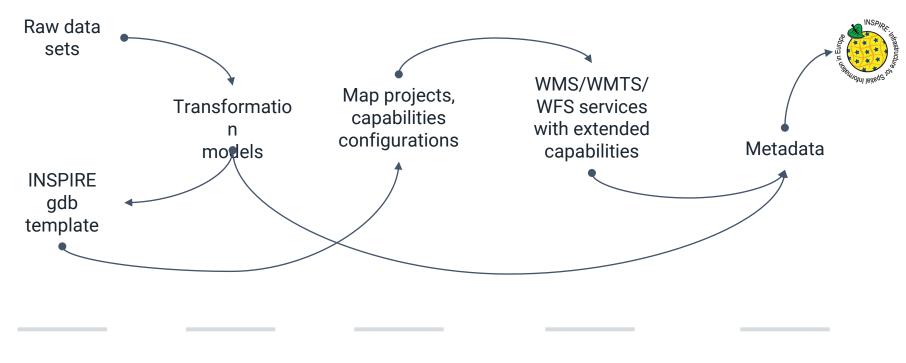
Stack of commercial software

MS SQL Server 8 core server

FME 4 core + desktop

ArcGIS Desktop ArcInfo, ArcView for each workplace

Publish


ArcGIS Server 16 core server

ArcGIS for INSPIRE Extension for 8 cores

ESRI Geoportal Open source metadata portal

MS SQL Server

FME

ArcGIS desktop

ArcGIS Server INSPIRE ext.

ESRI Geoportal

Problems we faced after the project

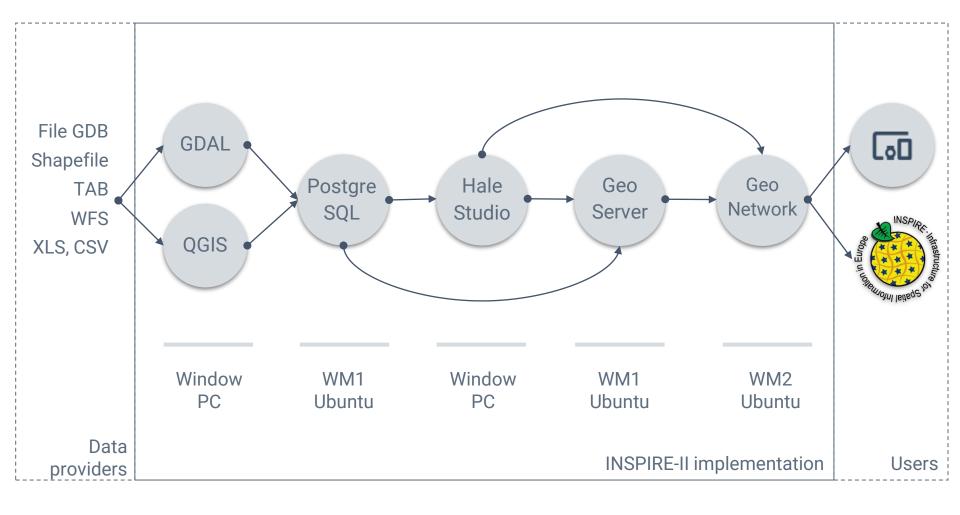
- Overcomplicated and poorly documented transformation models
- 16 cores for 10 themes but services still worked unreasonably slow
- Data structure implementation based on software
- Poor implementation and performance of WFS
- WMTS even for small datasets because of WMS performance issues
- No space for customization in technical architecture
- Dependence on new releases that made us dependent on new investments
- The system was created to finish the project, not for long run maintenance by ourselves

At the end...

- We actually didn't understand how some of the parts worked at all
 Dependency between INSPIRE data specification, add template and
 - Dependency between INSPIRE data specification, gdb template and transformation models just drove us crazy
- Knowledge gap was bigger problem than vendor lock
- No real specialists in the team = no active participation in INSPIRE progress

INSPIRE-II

Implementation using open source software


- Create a system that we can understand, administer and develop by ourselves
- Create infrastructure that is cost-effective in the long run
- Automate the workflow as much as possible
- Create strong know-how base

The expectations for the project

Create a real team of specialists who understand INSPIRE

The biggest doubts before transition to open source GIS

- If we face a problem, we will have to solve it on our own
- Too few specialists in this field, so how we will maintain the system after the project
- Is OS GIS mature and user-friendly enough
- Unfamiliarity with the software. Didn't know what to expect
- Getting the system ready for production will be painful
- INSPIRE is hard, open source GIS is hard are we well prepared for this

WM1 - DBMS

4 GB RAM, 2 vcpu Ubuntu Server PostgreSQL Extensions - PostGIS, pg-cron

WM5 - File server

2 GB RAM, 1vcpu, 200 GB space Ubuntu Server GDAL

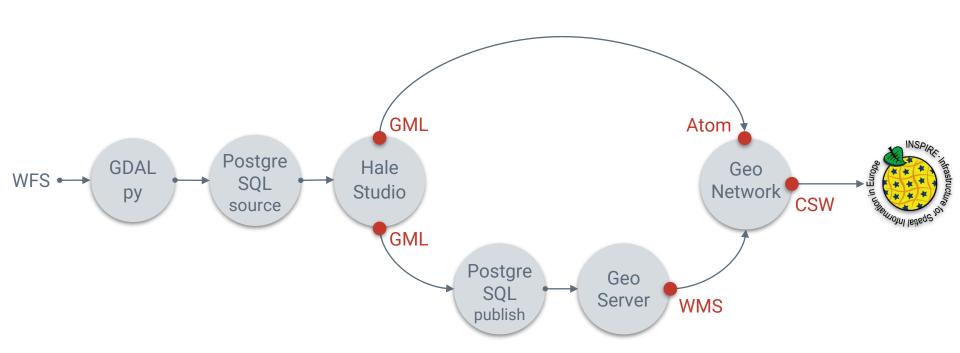
WM2 - GIS server

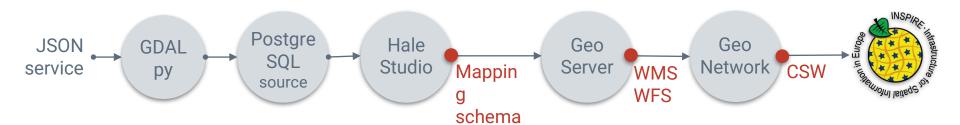
32 GB RAM, 4 vcpu Ubuntu Server GeoServer Extensions - INSPIRE, appschema

WM5 - HTTP/Proxy server

2 GB RAM, 1vcpu Ubuntu Server Apache HTTP Server

WM3 - Metadata server


6 GB RAM, 2vcpu Ubuntu Server GeoNetwork


Desktop workplace

Standard workstation Windows Hale Studio, QGIS

USE CASE: GE (geology)

USE CASE: MF (Meteorological features)

RESULTS!

Takeaways

Experience and what we would do differently

What opportunities have opened up for us

- Flexibility to modify and adapt solution
- Freedom to choose parts of technological chain
- Flexibility for scaling the system
- Test out the newest versions
- Know-how and understanding how system works
- Self motivation and the joy of discovery

Lessons learned from mistakes

- Dedicate budget for specialized trainings (esp. for Hale Studio, PostgreSQL)
- Dedicate budget for technical support during project
- Try to publish and validate your service as soon as possible
- Do not try to cover all the errors from validator reports immediately
- Data preparation for a single data theme can take from a few weeks to a month or more
- In our case it was easier to redo the things from commercial software than migrate it to open source

A few technical tips

- More transformation and data preparation for PostgreSQL and PostGIS
- Use dynamic app-schema mapping in geoserver when it's actually needed
- Start with GML and Atom for data download
- Flat data structure for WMS is actually very good
- It is not necessary to display all the data in small scales:)
- Increase resources only when needed

Implementation of INSPIRE in Lithuania: experience with the transition to FOSS4G

Andrius Balčiūnas, Rita Viliuvienė Vilnius University

andrius.balciunas@chgf.vu.lt

The Baltic Geospatial Information Technology Conference | Rīga | 2023